DataSplit Reference =================== .. automodule:: dacapo :noindex: DataSplit ^^^^^^^^^ :code:`DataSplits` are collections of multiple :code:`DataSets`, with each :code:`DataSet` assigned to a specific role. i.e. training data, validation data, testing data, etc. .. autoclass:: dacapo.experiments.datasplits.DataSplit :members: .. autoclass:: dacapo.experiments.datasplits.TrainValidateDataSplit :members: Configured with :class:`dacapo.datasplits.datasplits.TrainValidateDataSplitConfig` DataSet ^^^^^^^ :code:`DataSets` define a spatial region containing the necessary data for training provided as multiple `Arrays`. This can include as much as raw, ground_truth, and a mask, or it could be just raw data in the case of self supervised models. ABC: .. autoclass:: dacapo.experiments.datasplits.datasets.Dataset :members: Implementations: .. autoclass:: dacapo.experiments.datasplits.datasets.RawGTDataset :members: Configured with :class:`dacapo.experiments.datasplits.datasets.RawGTDatasetConfig` Arrays ^^^^^^ :code:`Arrays` define the interface for a contiguous spatial region of data. This data can be raw, ground truth, a mask, or any other spatial data. :code:`Arrays` can be a direct interface to some storage i.e. a zarr/n5 container, tiff stack, or other data storage, or can be a wrapper modifying another array. This might include operations such as normalizing intensities for raw data, binarizing labels to generate a mask, or upsampling and downsampling. Providing these operations as wrappers around allows us to lazily fetch and transform the data we need consistently in different contexts such as training or validation. ABC: .. autoclass:: dacapo.experiments.datasplits.datasets.arrays.Array :members: Implementations: .. autoclass:: dacapo.experiments.datasplits.datasets.arrays.ZarrArray :members: Configured with :class:`dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig` .. autoclass:: dacapo.experiments.datasplits.datasets.arrays.BinarizeArray :members: Configured with :class:`dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig` .. autoclass:: dacapo.experiments.datasplits.datasets.arrays.ResampledArray :members: Configured with :class:`dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig` .. autoclass:: dacapo.experiments.datasplits.datasets.arrays.IntensitiesArray :members: Configured with :class:`dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig` .. autoclass:: dacapo.experiments.datasplits.datasets.arrays.MissingAnnotationsMask :members: Configured with :class:`dacapo.experiments.datasplits.datasets.arrays.MissintAnnotationsMaskConfig` .. autoclass:: dacapo.experiments.datasplits.datasets.arrays.OnesArray :members: Configured with :class:`dacapo.experiments.datasplits.datasets.arrays.OnesArrayConfig` .. autoclass:: dacapo.experiments.datasplits.datasets.arrays.ConcatArray :members: Configured with :class:`dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig` .. autoclass:: dacapo.experiments.datasplits.datasets.arrays.LogicalOrArray :members: Configured with :class:`dacapo.experiments.datasplits.datasets.arrays.LogicalOrArrayConfig` .. autoclass:: dacapo.experiments.datasplits.datasets.arrays.CropArray :members: Configured with :class:`dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig`