gunpowder Logo
  • Overview
  • Installation
  • Tutorial: A Simple Pipeline
  • Tutorial: Writing Your Own Node
  • API Reference
gunpowder
  • Gunpowder Documentation

Gunpowder Documentation

What is Gunpowder?

Gunpowder is a library to facilitate machine learning on large, multi-dimensional arrays.

Gunpowder allows you to assemble a pipeline from data loading over pre-processing, random batch sampling, data augmentation, pre-caching, training/prediction, to storage of results on arbitrarily large volumes of multi-dimensional images. Gunpowder is not tied to a particular learning framework, and thus complements libraries like PyTorch or TensorFlow.

  • Overview
  • Installation
  • Tutorial: A Simple Pipeline
    • A minimal pipeline
    • Random samples
    • Geometric augmentation
    • Intensity augmentation
    • Creating batches with multiple samples
    • Requesting multiple arrays
    • Training a network
    • Predicting on a whole image
    • What next?
  • Tutorial: Writing Your Own Node
    • The basics: prepare and process
    • Changing an array in-place
    • Requesting additional data
    • Creating new arrays
  • API Reference
    • Data Containers
    • Requests and Specifications
    • Geometry
    • Node Base Classes
    • Source Nodes
    • Augmentation Nodes
    • Location Manipulation Nodes
    • Array Manipulation Nodes
    • Image Processing Nodes
    • Label Manipulation Nodes
    • Graph Processing Nodes
    • Provider Combination Nodes
    • Training and Prediction Nodes
    • Output Nodes
    • Performance Nodes
    • Iterative Processing Nodes

Indices and tables

  • Index

  • Module Index

  • Search Page

Next

© Copyright 2025, Jan Funke, William Patton, Renate Krause, Julia Buhmann, Rodrigo Ceballos Lentini, William Grisaitis, Chris Barnes, Caroline Malin-Mayor, Larissa Heinrich, Philipp Hanslovsky, Sherry Ding, Andrew Champion, Arlo Sheridan, Constantin Pape.

Built with Sphinx using a theme provided by Read the Docs.