motile_tracker.example_data

Attributes

logger

Functions

Mouse_Embryo_Membrane(→ list[napari.types.LayerData])

Loads the Mouse Embryo Membrane raw data and segmentation data from

Fluo_N2DL_HeLa(→ list[napari.types.LayerData])

Loads the Fluo-N2DL-HeLa 01 training raw data and silver truth from

Fluo_N2DL_HeLa_crop(→ list[napari.types.LayerData])

Loads the Fluo-N2DL-HeLa 01 training raw data and silver truth from

read_zenodo_dataset(→ list[napari.types.LayerData])

Read a zenodo dataset (assumes pre-downloaded)

read_ctc_dataset(→ list[napari.types.LayerData])

Read a CTC dataset from a zarr (assumes pre-downloaded and converted)

download_zenodo_dataset(→ None)

Download a sample dataset from zenodo doi and unzip it, then delete the zip. Then convert the tiffs to

download_ctc_dataset(→ None)

Download a dataset from the Cell Tracking Challenge

convert_4d_arr_to_zarr(tiff_file, zarr_path, zarr_group)

Convert 4D tiff file image data to zarr. Also deletes the tiffs!

convert_to_zarr(tiff_path, zarr_path, zarr_group[, ...])

Convert tiff file image data to zarr. Also deletes the tiffs!

Module Contents

motile_tracker.example_data.logger
motile_tracker.example_data.Mouse_Embryo_Membrane() list[napari.types.LayerData]

Loads the Mouse Embryo Membrane raw data and segmentation data from the appdir “user data dir”. Will download it from the Zenodo DOI if it is not present already. Returns:

list[LayerData]: An image layer of raw data and a segmentation labels

layer

motile_tracker.example_data.Fluo_N2DL_HeLa() list[napari.types.LayerData]

Loads the Fluo-N2DL-HeLa 01 training raw data and silver truth from the appdir “user data dir”. Will download it from the CTC and convert it to zarr if it is not present already. Returns:

list[LayerData]: An image layer of 01 training raw data and a labels

layer of 01 training silver truth labels

motile_tracker.example_data.Fluo_N2DL_HeLa_crop() list[napari.types.LayerData]

Loads the Fluo-N2DL-HeLa 01 training raw data and silver truth from the appdir “user data dir”. Will download it from the CTC and convert it to zarr if it is not present already. Returns:

list[LayerData]: An image layer of 01 training raw data and a labels

layer of 01 training silver truth labels

motile_tracker.example_data.read_zenodo_dataset(ds_name: str, raw_name: str, label_name: str, data_dir: pathlib.Path) list[napari.types.LayerData]

Read a zenodo dataset (assumes pre-downloaded) and returns a list of layer data for making napari layers

Args:

ds_name (str): name to give to the dataset raw_name (str): name of the file that points to the intensity data label_name (str): name of the file that points to the segmentation data data_dir (Path): Path to the directory containing the images

Returns:
list[LayerData]: An image layer of raw data and a segmentation labels

layer

motile_tracker.example_data.read_ctc_dataset(ds_name: str, data_dir: pathlib.Path, crop_region=False) list[napari.types.LayerData]

Read a CTC dataset from a zarr (assumes pre-downloaded and converted) and returns a list of layer data for making napari layers

Args:

ds_name (str): Dataset name data_dir (Path): Path to the directory containing the zarr

Returns:
list[LayerData]: An image layer of 01 training raw data and a labels

layer of 01 training silver truth labels

motile_tracker.example_data.download_zenodo_dataset(ds_name: str, raw_name: str, label_name: str, data_dir: pathlib.Path) None

Download a sample dataset from zenodo doi and unzip it, then delete the zip. Then convert the tiffs to zarrs for the first training set consisting of 3D membrane intensity images and segmentation.

Args:

ds_name (str): Name to give to the dataset raw_name (str): Name of the file that contains the intensity data label_name (str): Name of the file that contains the label data data_dir (Path): The directory in which to store the data.

motile_tracker.example_data.download_ctc_dataset(ds_name: str, data_dir: pathlib.Path) None

Download a dataset from the Cell Tracking Challenge and unzip it, then delete the zip. Then convert the tiffs to zarrs for the first training set images and silver truth.

Args:

ds_name (str): Dataset name, according to the CTC data_dir (Path): The directory in which to store the data.

motile_tracker.example_data.convert_4d_arr_to_zarr(tiff_file: str, zarr_path: str, zarr_group: str, relabel=False)

Convert 4D tiff file image data to zarr. Also deletes the tiffs! Args:

tiff_file (str): string representing path to tif file to be converted zarr_path (str): path to the zarr file to write the output to zarr_group (str): group within the zarr store to write the data to relabel (bool): if true, relabels the segmentations to be unique over time

motile_tracker.example_data.convert_to_zarr(tiff_path: pathlib.Path, zarr_path: pathlib.Path, zarr_group: str, relabel=False)

Convert tiff file image data to zarr. Also deletes the tiffs! Args:

tif_path (Path): Path to the directory containing the tiff files zarr_path (Path): path to the zarr file to write the output to zarr_group (Path): group within the zarr store to write the data to